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Abstract

The nonlinear vibration isolation system (NVIS) works in a chaotic state when its parameters are in chaotic range.

Under single-frequency harmonic excitation, the system exhibits chaotic behavior with broad band frequency. This idea

can be used to control the line spectra water-born noise of the underwater vehicle, and to improve its capability of

concealment. In order to ensure that the system works in the chaotic state effectively, a new chaos anti-control method is

presented in this paper. Firstly, the NVIS model with feedback is provided, and the periodic-doubling bifurcation

characteristic is analyzed. Simulation results show that the system has multiple dynamical behaviors with different

parameters. Finally, an experiment on the basis of self-design rig is carried out, and the acceleration signal is measured.

Combined with the chaos identification technology, it proves that the system works in a chaotic state at some special

parameter range.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

With the development of the chaos theory, how to control chaos becomes an important problem in
engineering. OGY chaos controlling method was presented in Ref. [1]. The main idea is to determine the
unstable periodic orbit in the reconstructed attractor firstly, and choose one of them as controlling target.
Then, the chaotic orbit is stabilized on the special periodic one by taking small perturbation. This method,
however, is mainly applied to control harmful chaos in practice. In fact, chaos is found to be a useful
technology in many fields. At present, chaos in the well-known engineering fields, including chaos
synchronization in security communication [2], chaotic roller, and chaotic vibration griddle and so on, has
been researched extensively. The important procedure in these applications is how to realize chaotification
[3–5], and then the special chaotic state is obtained. Tang et al. [6] analyzed the role of the xjxj term in chaos
anti-control for the autonomous system, and results show that most of the piecewise system with cubic
nonlinear factor can exhibit chaotic behavior. The delay feedback control method [7] was applied in the
continuous-time minimum phase system chaotic by Wang et al., [8] and they researched how to chaotify a
stable LTI system by tiny feedback control. Yang et al. [9] studied how to apply the impulsive input method to
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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control chaos in a continuous-time system. Lou et al. [10] have studied the application of the chaos in
vibration isolation system design, and they discussed how line spectra water-born noise of the warship can be
reduced. In order to ensure that the system works in a chaotic state, it is important to determine its parameters
range in the design. The traditional method is to analyze the system with nonlinear theory and then predict the
chaotic parameters range. However, the difference between the predicted range and the practical one is
remarkable because of the complexity of the nonlinear system. And thus the isolators with adjustable
parameters must be applied in the system. The nonlinear vibration isolation system (NVIS) with feedback
parts is presented in this paper. The system can be adjusted to work in the chaotic state by changing the
feedback gain.
2. Modeling of the NVIS

In general, the periodic linear spectrum contained in the water-born noise is mainly produced by periodic
excitation of machines, such as diesel engine, gas turbine and speed-down gears [11]. Fig. 1 illustrates the
model of a vibration isolation system. In order to simplify the analysis, the weak interferences are neglected.
The physical system is modeled as a single degree of freedom, damped oscillator subject to external excitation
F cosOT, and the following equation is obtained:

M €X þ C _X þNðX Þ ¼ F cos OT , (1)

where €X ¼ d2X=dT2, _X ¼ dX=dT and M €X , C _X , N(X) are the inertial force, damping force and elastic
restoring force, respectively. When these forces are linear, Eq. (1) represents a linear vibration isolation
system, and thus the response of the system is harmonic according to superposition principle, that is, the
response has the same periodic spectrum component as the external excitation. However, if N(X) equals to
KX+UX3, Eq. (1) becomes

M €X þ C _X þ KX þUX 3 ¼ F cos OT . (2)

This equation represents an NVIS with linear damping force and nonlinear restoring force. When U40, it is
called hard stiffness, otherwise it is soft stiffness. Here, only the hard stiffness system is discussed.

By defining O0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
M=K

p
, T ¼ O0t, and X ¼ x

ffiffiffiffiffiffiffiffiffiffiffi
K=U

p
, Eq. (2) can be written as

€xþ xþ x3 ¼ �d _xþ g cos ot, (3)

where €x ¼ d2x=dt2, _x ¼ dx=dt, d ¼ C=
ffiffiffiffiffiffiffiffiffi
MK
p

, o ¼ OO0 and g ¼ F=ðK
ffiffiffiffiffiffiffiffiffiffiffi
K=U

p
Þ.

It is obvious that Eq. (3) is Duffing’s equation [12], and the corresponding state equation is

_x ¼ y;

_y ¼ �x� x3 � d � yþ g cos ot:

(
(4)
Equipment

Isolator

F cos � T

Fig. 1. Model of vibration isolation system.
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3. Chaos anti-control method

For n-dimensional nonlinear system _x ¼ fðx; tÞ, where f is nonlinear smooth vector function, and x is the
system state x ¼ [x1, x2,y, xn]

T, the output of the system y ¼ cx, and c is 1� n constant matrix. The control
law of the nonlinear feedback controller for the system is

Q ¼ Gx, (5)

where G is the feedback gain coefficient, and when the controller is applied to the nonlinear dynamic system,
the controlled equation is obtained:

_x ¼ fðx; tÞ �Q. (6)

When the gain coefficient is in a special range, the system can work in an expected state, and Eq. (4) can be
rewritten as

_x ¼ y;

_y ¼ �x� x3 � d � yþ g cos ot� Gx:

(
(7)

Eq. (7) can also be written as

_x ¼ y;

_y ¼ �ð1þ GÞx� x3 � d � yþ g cos ot:

(
(70)

4. Period-doubling bifurcation analysis of the NVIS with feedback control

The dynamical characteristic of system in Eq. (7) is analyzed first in this paper. It is clear that Eq. (7) looks
like the hardening Duffing equation which has only one stable equilibrium point. Although the report of the
nonlinear oscillator with one equilibrium point is presented in many references [13,14], the emphasis is always
put on the chaos of the nonlinear system with two or three equilibrium points. E.H. Dowell and C. Pezeshki
have studied the Holmes-type Duffing system with three equilibrium point and explained the mechanism of
the chaos. Because the autonomous system corresponding to the hardening stiffness Duffing system has no
homo- and hetero-clinic trajectory, there exists no chaos in the sense of the Smale horseshoe. The chaotic
parameter range analysis is carried out in this paper, from the point of view of the period-doubling
bifurcation.

For the hardening Duffing system, Eq. (70) is rewritten as

€xþ d _xþ ð1þ GÞxþ x3 ¼ g cosðotþ jÞ, (8)

where an initial phase angle j is introduced, and the phase difference of the response can be transferred to the
system equation to simplify the derivation. Suppose the zero-order approximate solution to Eq. (8) is

xðtÞ ¼ a0 cos ot. (9)

Substituting Eq. (9) into Eq. (8), we get

cos ot : 3
4
a3
0 þ a0½ð1þ GÞ � o2� ¼ g;

sin ot : da0o ¼ h;

where g ¼ g cosj, h ¼ g sinj. In the derivation, the formula cos3 ot ¼ 3
4 cos otþ 1

4 cos 3ot is considered and
the term containing high order harmonic cos 3ot is neglected. Because the amplitude a0 in practical vibration
is small, the high order term a0

3 can be neglected, and then the parameters of the zero-order approximate
solution are obtained: a0 ¼ ðg sin jÞ=do and j ¼ arctgðdo=ð1� o2ÞÞ.

The perturbation method is applied to analyze the stability of period solution Eq. (9) first. If a small
disturbance is added to Eqs. (9) and the following equation is obtained:

xðtÞ ¼ fðtÞ þ ZðtÞ, (10)
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where f(t) ¼ a0 cosot. Substitute Eq. (10) into Eq. (8), neglect the high-order term to obtain the following
equation:

€Zþ d_Zþ Z
3a2

0 þ 2

2
ð1þ GÞ þ

3a2
0

2
cos 2ot

� �
¼ 0. (11)

As long as the solution to Eq. (11) is bounded, the period solution f(t) is stable, vice versa. It is obvious that
Eq. (11) is the differential equation with periodic coefficients. For this kind of second-order system, the
Floquet theory is to be applied to study the stability of the solution. Firstly, Eq. (11) is transformed to
Hill-type equation:

€xþ pðtÞx ¼ 0, (12)

where pðtÞ ¼ 1
4
½ð6a2

0 þ 4Þð1þ GÞ � d2 þ 6a2
0 cos 2ot�. Substitute T ¼ ot into Eq. (12) and we get ðd2x=dT2Þþ

ð1=o2ÞpðTÞxðTÞ ¼ 0. Eq. (12) can be written as a Mathieu type equation:

€xþ ðd0 þ 2� cos 2tÞx ¼ 0, (13)

where

d0 ¼
ð6a2

0 þ 4Þð1þ GÞ � d2

4o2
; � ¼

3a2
0

4o2
. (130)

In order to determine the stable region of the period-doubling solution for Mathieu equation, the solution
to Eq. (13) and parameter d0 are expanded in a power series of e, and thus the following equations are
obtained:

xðt; �Þ ¼ x0ðtÞ þ �x1ðtÞ þ �
2x2ðtÞ þ . . . , (14)

d0 ¼ d0 þ �d1 þ �2d2 þ . . . . (15)

Substituting the two equations above into Eq. (13), and equating the coefficients of same powers, the
following equations can be obtained:

€x0 þ d0x0 ¼ 0, (16a)

€x1 þ d0x1 ¼ �d1x0 � 2x0 cos 2t, (16b)

€x2 þ d0x2 ¼ �d2x0 � 2x1 cos 2t� d1x1. (16c)

..

.

Let d0 ¼ n2 (n ¼ 0, 1, 2,y), and Eq. (16a) has periodic solution:

x0 ¼ a cos ntþ b sin nt. (17)

In order to discuss the period-doubling bifurcation, suppose d0 ¼ 1. Substitute Eq. (17) into Eq. (16b), and
eliminate secular term. As a result, the following equations are obtained x1 ¼ ð1=8Þa cos 3t or x1 ¼

ð1=8Þb sin 3t. Substituting them into Eq. (16c), we obtain

€x2 þ d0x2 ¼ �a d2 þ 1
8

� �
cos tþ 1

8
a cos 3t� 1

8
a cos 5t,

€x2 þ d0x2 ¼ �b d2 þ 1
8

� �
sin t� 1

8
sin 3t� 1

8
b sin 5t. ð18Þ

Because x2 is a period solution, we can get d2 ¼ �1/8 from the equations above. And thus two boundaries
are obtained:

d0 ¼ 1� �� 1
8
�2 þOð�3Þ, (19a)

d0 ¼ 1þ �� 1
8
�2 þOð�3Þ. (19b)
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They correspond to the following solutions:

x1 ¼ a cos tþ 1
8
� cos 3t

� �
þOð�2Þ, (20)

x2 ¼ b sin tþ 1
8
� sin 3t

� �
þOð�2Þ. (21)

Neglect square of small variable e, substitute Eq. (130) into Eqs. (19a) and (19b), and the range of the first
period-doubling bifurcation is obtained ffiffiffiffiffiffi

o0
1

q
ooo

ffiffiffiffiffiffi
o0

2

q
(22)

where

o0
1 ¼

d2ð4ð1þ GÞ � d2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d4ð4ð1þ GÞ � d2Þ þ 48d2g2 sin2 j

q
8d2

,

o0
2 ¼

d2ð4ð1þ GÞ � d2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d4ð4ð1þ GÞ � d2Þ þ 144d2g2 sin2 j

q
8d2

.

Then, suppose the first-order approximate solution of Eq. (8) is

xðtÞ ¼ a1 cos otþ b1 cos
o
2

tþ y
� �

. (23)

The range of second period-doubling bifurcation can be evaluated. The system can enter chaotic range
through many times of period-doubling bifurcation.

5. Simulations

In Eq. (7), set parameters as follows: G ¼ 0.1, d ¼ 0.01 and g ¼ 28.28. Then bifurcation diagram of the
system, as shown in Fig. 2a, can be obtained by changing excitation frequency o. When frequency oo0.12,
the system exhibits period-1 behavior. As the parameter o is increased, the bifurcation solution appears, and
the system exhibits multi-period behavior. In the range 0.5ooo0.97, the response of the system is chaos at
some values. When o ¼ 0.92, the phase plane of the system is shown in Fig. 2b. It is a strange attractor [15,16],
which is different from limit cycle or torus, and the Lyapunov exponent is 0.214. As o approaches 1, system
exhibits period-1 behavior once more. According to Eq. (7), the variation of gain parameter G can also change
the system response. When the parameter o ¼ 0.9 and is constant, and the parameter G is varied, the system
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Fig. 2. Dynamic response of the system under different excitation frequency: (a) bifurcation diagram and (b) phase plane diagram.
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Fig. 3. Dynamic response of the system at different gain parameter: (a) bifurcation diagram and (b) phase plane diagram.

coniform coil steel spring 

actuator 

Fig. 4. Experimental rig of NVIS.
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can work in a chaotic state in the range Go1.3, as shown in the bifurcation diagram (Fig. 3a. For example,
when the gain G ¼ 1.22, the system exhibits chaotic response, and the Lyapnov exponent is 0.153. As shown in
Fig. 3b, the attractor is strange. In practical engineering, the system works in a special frequency, and hence
the variation of G can reach the target of chaos anti-control according to the analysis above.

6. Experiment

The experiment is carried out on the self-design coniform coil steel spring NVIS, as shown in Figs. 4 and 5.
The test equipments include signal generator, power amplifier, actuator, acceleration sensor, signal

measuring system (Pimento), computer (Fig. 6) etc. The acceleration sensor is used to measure the vibration
signal of the system, and then it is transferred to the DSP. The output is applied to drive the actuator, and the
gain coefficient can be adjusted. In practical engineering, the identification of chaotic vibration is very
important. In general, the response of vibration isolation system such as velocity, acceleration can be
measured by instruments. However, it is difficult to judge whether the state of system is chaotic or not by time
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excitation

Fig. 5. Excitation source.

Fig. 6. Signal measuring system.
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history. The power spectrum analysis is an efficient method to distinguish the periodic, multi-periodic and
non-periodic signal. Clearly, the periodic and multi-periodic signal is regular and there are many peaks in the
spectrum. The non-periodic signal is irregular and shows broadband spectrum. Chaotic signal is non-periodic,
and can be distinguished from the regular one by power spectrum analysis. Compared with other indices such
as fractal dimension, Lyapunov exponent [17], the power analysis, however, cannot be used to obtain the
detailed information of the system. Hence, it is necessary to analyze the time series with comprehensive
method.

Because the measured signal contains the information of all variables participating in the movement, the
time series should be embedded in three or higher dimension phase space to characterize the dynamics of the
original phase space. Then, the useful information can be revealed by phase space reconstruction.
The trajectories in the space reflect the evolution of the system behavior. For regular signals, the attractor
is a cycle in phase space. When signal is a chaotic time series, however, the attractor is strange, which has an
irregular, complex and self-similar structure, i.e. it has fractal characteristic. The measured time series can be
expressed by

xðt0Þ; xðt1Þ; xðt2Þ; . . . ; xðtiÞ 2 R, (24)

where ti ¼ t0+iDt. In order to obtain the geometrical structure of the dynamical system in the phase space,
Packard et al. present a reconstruction technique, i.e. embedding the one-dimension time series in d-dimension
space, and thus

Y ðtÞ ¼ ½xðtÞ;xðtþ tÞ;xðtþ 2tÞ; . . . ;xðtþ ðd � 1ÞtÞ�, (25)
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where t and d are time lag and embedding dimension respectively, Y(t) is the dynamic state of the system at t.
So a map between phase space RM and Rd is constructed:

jðdÞ : RM ! Rd . (26)

Takens and Mañé [18] argue that if d42D+1 is satisfied, where d is an integer and D is fraction, the
attractor in the reconstructed space will be smoothly related to the one in the unknown original physical
coordinate. In the process of phase space reconstructing, it is critical to choose suitable parameters t and d. If
time lag t is too small, the coordinates x(t+jt) and x(t+(j+1)t) will be so close to each other that they cannot
be distinguished. Similarly, if t is too large, x(t+jt) and x(t+(j+1)t) are completely independent in terms of
statistics. As far as mutual information is concerned, if t is too small, it will lead to information redundancy. If
t is too large, the mutual information I(t) approaches to zero, that is, x(t) and x(t+t) are independent.
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The trajectories of the attractor are also affected by t. When it is small, the phase trajectories are compressed
in a diagonal direction and the attractor contains only little information [19]. If t is increased, the compressed
attractor expands gradually. However, when time lag t is lager than a certain value, the attractor is distorted in
the space. Therefore, a suitable t can ensure that the attractor unfolds fully and contains abundant useful
information. To choose an optimal time lag, the first minimum of average mutual information is applied in the
paper. For embedding dimension, the main task is to provide a Euclidean space Rd large enough so that the
attractor can be unfolded without ambiguity. If d is too small, the attractor is folded and much information is
lost. If d is too large, the calculation and the effect of noise increase greatly. Therefore, a suitable embedding
dimension is expected to make sure that the attractor expands fully and the effect of the noise can be reduced
greatly. Many methods including singular value decomposition can be applied to decide embedding
dimension. Here the method of false neighbors is used. In the experiment, the excitation frequency is 4.5Hz.
When the gain coefficient is 0.85, the acceleration signal is measured by the LMS system, and the sample
frequency is 100Hz. The time history is shown in Fig. 7a, it is irregular just like random signal. The frequency
spectra are broad band one, as shown in Fig. 7b. The first minimum of average mutual information is use to
calculate the delay time and the embedding dimension is determined by the FNN. The delay time is 5, and the
embedding dimension is 5, as shown in Figs. 7c and d. The reconstructed attractor phase plane diagram is
shown in Fig. 7e, and the correlation dimension is 3.08, which is shown in Figs. 7f and g. It is obvious that the
correlation dimension [20] of the measured time series is saturated as the embedding dimension is increased,
which is different from random signal.

7. Conclusions

Based on the NVIS, the linear feedback scheme is discussed in detail. Results show that when the excitation
frequency is varied, the system response can change from periodic to chaotic. When the system works in a
special frequency, the variation of the gain coefficient can result in the chaos anti-control. The bifurcation
diagram of the system is presented, and the strange attractor is obtained at some parameter values. In order to
check the correction of the chaos anti-control method, an experiment about linear feedback is carried out on
the self-design experimental rig, and the measured signal is analyzed with the nonlinear time series analysis
method. At first, the first minimum of average mutual information is applied to determine the delay time and
the FNN method is used to determine the embedding dimension. As a result, the delay time is 5, and the
embedding dimension is 5. The characteristic exponent is calculated by the phase space reconstruction. As
shown in Fig. 7f, the correlation curve converges as the embedding dimension increases. It is different from the
random noise. And the correlation dimension is obtained 3.08 according to the G-P algorithm. The Lyapunov
exponent is calculated as well and the value is 0.1297 which is positive. According to the analysis above, the
system response is chaotic.
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